CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0580 MATHEMATICS

0580/42

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\small \circledR}$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0580	42

Abbreviations

cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

nfww not from wrong working

soi seen or implied

Qu	estion	Answer	Mark	Part marks
1	(a)	1848 final answer	2	M1 for $1650 \times \left(1 + \frac{12}{100}\right)$ oe
	(b) (i)	1750	2	M1 for $\frac{500}{9-5}$ [×5] or [×9] or any equation which
				would lead to $4x = 500$ or $4x = 2500$ or $4x = 4500$ or $4x = 7000$ when simplified
	(ii)	$64\frac{2}{7}$ or 64.3 or 64.28 to 64.29	1	
	(c) (i)	33 : 20 oe	2	B1 for 33 : 6 or 20 : 6 or 5.5 oe seen or 3.33oe seen or M1 for two ratios with a common number of children implied by $20k$ and $33k$ seen, $k > 0$
	(ii)	236	3	M2 for $\frac{24}{2} \times 11 + \frac{24}{3} \times 10$ oe
				or $((3 \times 11) + (2 \times 10)) \times 24 \div 6$
				or $\frac{6}{6+20+33} \times x = 24$
				or M1 for $\frac{24}{2} \times 11$ or $\frac{24}{2} \times 13$ soi
				or $\frac{24}{3} \times 10$ or $\frac{24}{3} \times 13$ soi oe or $24 \div 6$ soi
	(d)	17[.00]	3	M2 for $20.40 \div \left(1 + \frac{20}{100}\right)$ oe
				or M1 for (100 + 20)% oe associated with 20.40 seen

Page 3	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0580	42

Q	uestion	Answer	Mark	Part marks
2	(a) (i)	66	1	
	(ii)	24	1FT	FT 90 – their (a)(i)
	(iii)	66	2FT	FT 90 – their (a)(ii) M1 for [BOD =] 180 – 48 or 180 – 2 × their (a)(ii)
	(iv)	114	1FT	FT 180 – their (a)(iii)
	(b)	83.6 or 83.60[]	2	M1 for $\frac{1}{2} \times 15 \times 15 \times \sin(180 - 48)$ oe or $\frac{1}{2} \times 15 \times 15 \times \sin(180 - 2 \times their (a)(ii))$ oe
	(c)	Opposite angles add up to 180 OR Angle in a semicircle [=90]	1	

Page 4	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0580	42

Question	Answer	Mark	Part marks
3 (a) (i)	$\frac{600}{x+20}$ final answer	1	
(ii)	$\frac{600}{x}$ -their $\frac{600}{x+20}$ = 1.5 oe	M1	
	or $\frac{600(x+20) - 600x = 1.5x(x+20)}{600(x+20) - 600x} = \frac{600(x+20) - 600x}{x(x+20)} = their 1.5$	M1	Correctly clearing, or correctly collecting into a single fraction, two fractions both with algebraic denominators, one being $\frac{600}{x}$
	$600x + 12000 - 600x = 1.5x^{2} + 30x$ $[0 = 1.5x^{2} + 30x - 12000]$ $0 = x^{2} + 20x - 8000$	M1	Dep on previous M1, correctly multiplying <i>their</i> brackets and clearing fraction
	$0 = x^2 + 20x - 8000$	A1	With no errors or omissions seen, dep on M3
(b)	-100, 80	3	M2 for $(x + 100)(x - 80)$ or M1 for $(x + a)(x + b)$ where $ab = -8000$ or $a + b = 20$ OR B1 for $\sqrt{20^2 - 4 \times 1 \times (-8000)}$ or better and B1 for $\frac{-20 + \sqrt{q}}{2 \times 1}$ or $\frac{-20 - \sqrt{q}}{2 \times 1}$
(c)	6.67 or 6.666 to 6.667 oe	2FT	FT $\frac{12}{2(their 80) + 20} \times 100$ correctly evaluated to at least 3 sf M1 for choosing and using <i>their</i> positive root

Page 5	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0580	42

Qı	uestion	Answer	Mark	Part marks
4	(a) (i)	9π final answer	2	M1 for $\frac{135}{360} \times 2 \times \pi \times 12$ oe
	(ii)	(a) 4.5[0] or 4.497 to 4.504	2FT	FT their $9 \div 2$ M1 for $2\pi r = their \ 9\pi$ or $12\pi r = \frac{135}{360}\pi 12^2$ oe
		(b) 11.1 or 11.12[]	3FT	FT their $\sqrt{12^2 - their 4.5^2}$ to 3 sf or better (their 4.5 < 12)
	a> (2)			M2 for $\sqrt{12^2 - their} 4.5^2$ (their $4.5 < 12$) or M1 for $12^2 = h^2 + their 4.5^2$ oe (their $4.5 < 12$)
	(b) (i)	75 nfww	3	M2 for $l = \frac{35}{7} \times 15$ or $x = \frac{35}{7} \times 8$ oe or for 40 seen nfww or correct trig or Pythagoras' method leading to
				value rounding to 40.0 M1 for $\frac{l}{15} = \frac{35}{7}$ oe or $\frac{x}{8} = \frac{35}{7}$ oe or $\frac{l-35}{8} = \frac{35}{7}$ oe or $\frac{l-35}{4} = \frac{8}{15}$ oe
	(ii)	2730 or 2730.0 to 2730.4 nfww	3	M2 dep for $\pi \times 15 \times their 75 - \pi \times 8 \times (their 75 - 35) [+ \pi \times 8^2]$ dep their 75 > 35 or 805π [2527.7 to 2530] nfww or 869π [2728.6 to 2731.2] nfww
				or M1 for $\pi \times 15 \times their$ 75 or 1125 π [3532.5 to 3535.8] nfww seen
				or $\pi \times 8 \times (their 75 - 35)$ or 320π [1004.8 to 1005.8] nfww seen or $\pi \times 8^2$ or 64π [200.9 to 201.2] nfww seen
	(c) (i)	$16r^3$	2	M1 for $[M=] k \times r^3$ or $1458=k \times 4.5^3$ oe or $\frac{M}{1458} = \frac{r^3}{4.5^3}$ oe
				After M0, SC1 for 16 seen
	(ii)	8 : 27 oe	1	Must be numeric, e.g. 128:432

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0580	42

5 (a)	2 and 7	2	B1 for each value
(b)	Complete correct curve	5	B3 FT for their 9 or 10 points or B2 FT for their 7 or 8 points or B1 FT for their 5 or 6 points and B1 independent for one branch on each side of the y-axis and not touching the y-axis SC4 for correct curve with branches joined
(c)	Correct tangent and $-13 \le \text{grad} \le -8$	3	B2 for close attempt at tangent at $x = 1$ and answer in range OR B1 for ruled tangent at $x = 1$, no daylight at $x = 1$ Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x = 0.8$ and 1.2 and M1 (dep on B1 or close attempt at tangent [at any point] for $\frac{rise}{run}$
(d) (i	5 to 6	1	
(ii	2 to 2.35 and -2.55 to -2.35	2FT	FT their k B1FT for each correct solution
(e)	[a =] -5 [b =] -1 [c =] 12	3	B2 for two correct values or for $x^3 - 5x^2 - x + 12$ [= 0] oe or M1 for $x^2 - 2x + \frac{12}{x} = 3x + 1$

Page 7	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0580	42

6	(a)	$95.5^2 + 83.1^2 - 2 \times 95.5 \times 83.1 \times \cos 101$	M2	M1 for cos 101 = $\frac{95.5^2 + 83.1^2 - AB^2}{2 \times 95.5 \times 83.1}$
		138.0	A2	A1 for 19054.[] also implies M2
	(b)	110 or 109.7 to 109.8	4	B3 for 36.2 or 36.20 to 36.24[1]
				or M2 for $[\sin =]$ $\frac{83.1 \times \sin 101}{138[.0]}$ oe
				or M1 for correct implicit version
				After M0 , SC1 for angle $ABC = 42.76$ to 42.8
	(c)	18.8 or 18.79[]	2	M1 for 46.2 × cos(45 + 21) oe After M0, SC1 for answer 42.2 or 42.20 to 42.21
7	(a) (i)	316	4	M1 for 100, 250, 325, 375, 450 soi
				M1 for Σfm with m 's in intervals including boundaries [15800]
				M1 (dep on 2nd M1) for <i>their</i> $\Sigma fm \div 50$
	(ii)	Three correct blocks with heights 0.09, 0.36, 0.24 with correct widths and no gaps	3	B2 for two correct blocks or B1 for one correct block or three correct
				frequency densities soi
	(b)	Students have a greater range of estimates oe	B1	
		[On average] adults estimated a greater mass oe	B1	

Page 8	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0580	42

8 (a) (i)	$x \ge 100$ final answer	1	
(ii)	$y \ge 120$ final answer	1	
(iii)	$x + y \le 300$ final answer	1	
(iv)	$40x + 80y \ge 16000$ or $0.4x + 0.8y \ge 160$	M1	with no errors seen but isw substitution of values after correct inequality
(b)	x = 100 ruled	B1	
	y = 120 ruled	B1	
	x + y = 300 ruled	B1	
	x + 2y = 400 ruled	B2	Allow B1 for line with negative gradient passing through (400, 0) or (0, 200) when extended
	Correct shading	B1	Dep on all previous marks earned Condone any clear indication of the required region
(c)	200	2	M1 for $x = 100$ and $y = 200$ selected or for $x \times 0.4 + y \times 0.8$ oe evaluated where (x, y) is an integer point in <i>their</i> [unshaded] region

Page 9	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0580	42

	T.		1
9 (a)	$4x - 3x^2$ or $x(4 - 3x)$ nfww final answer	3	B2 for $3x^2 - 6x - 6x^2 + 10x$ or M1 for $3x^2 - 6x$ or $-6x^2 + 10x$
(b) (i)	(2+y)(3w-2x) oe final answer	2	M1 for $3w(2+y) - 2x(2+y)$ or $2(3w-2x) + y(3w-2x)$
(ii)	(2x + 5y)(2x - 5y) final answer	2	M1 for $(2x \pm 5y)(2x \pm 5y)$ or $(2x + ky)(2x - ky)$ or $(kx + 5y)(kx - 5y)$, $k \ne 0$ or $(2x + 5)(2x - 5)$ or $(2 + 5y)(2 - 5y)$
(c)	$\frac{27x^6}{64}$ final answer	2	B1 for 2 [out of 3] elements correct in the right form in final answer or final answer contains 27 and 64 and $x^{[-]6}$ or $\frac{3x^2}{4}$ seen or $\frac{729x^{12}}{4096}$ seen
(d) (i)	2 <i>n</i> is even and subtracting 1 gives an odd number	1	4 4096 Must interpret the $2n$ as even or not odd and then the -1 oe
(ii)	2n + 1 oe final answer	1	
(iii)	their $(2n+1)^2 - (2n-1)^2$	M1	Could use alternate correct expressions for consecutive odd numbers. Allow method and accuracy marks if correct. Could reverse the algebraic terms $their(2n-1)^2 - (2n+1)^2$ leading to $-8n$. Allow method and accuracy marks if correct.
	$4n^2 + 4n + 1 - 4n^2 + 4n - 1$	M1	Dep on M1 for expanding brackets in <i>their</i> expressions. If seen alone and completely correct then implies previous M1 Allow $4n^2 + 4n + 1 - (4n^2 - 4n + 1)$
	8 <i>n</i>	A1	With no errors seen. After 0 scored, allow SC1 for two correctly evaluated numeric examples of subtracting consecutive odd squares isw

Page 10	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0580	42

10 (a) (i)	9.43[]	2	M1 for $5^2 + ([-]8)^2$ or better
(ii)	(-3, 5)	1	
(b) (i)	(a) $\frac{1}{2}$ (a + b) or $\frac{1}{2}$ a + $\frac{1}{2}$ b	2	M1 for $\mathbf{a} + \frac{1}{2}AB$ oe, e.g $\mathbf{a} + AM$, $OA + \frac{1}{2}AB$
	(b) $\frac{1}{4}$ (a + b) or $\frac{1}{4}$ a + $\frac{1}{4}$ b	1FT	FT $\frac{1}{2}$ their (b)(i)(a) in terms of a and/or b in simplest form
	(c) $\frac{1}{4}$ (b – 3a) or $\frac{1}{4}$ b – $\frac{3}{4}$ a	2	M1 for -a + their (b)(i)(b) or any correct route
(ii)	3 : 4 final answer	3	M1 for $[AN =] -a + \frac{1}{3}b$
(c) (i)	Triangle drawn at $(-3, -3), (-6, -3), (-6, -4\frac{1}{2})$	3	A1 for $\frac{1}{4}$: $\frac{1}{3}$ oe or $AN = \frac{1}{3}(-3\mathbf{a} + \mathbf{b})$ or $3k$ to $4k$ After 0 scored SC1 for final answer 4 : 3 B2 for 2 vertices correct in triangle or 3 correct co-ordinates soi in working or B1 for 1 vertex in triangle correct soi or triangle of correct size and orientation but wrong position or M1 for correct set up e.g.
(ii)	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	2	$\begin{pmatrix} -1.5 & 0 \\ 0 & -1.5 \end{pmatrix} \begin{pmatrix} 2 & 4 & 4 \\ 2 & 2 & 3 \end{pmatrix}$ SC1 for 1 correct row or column or for $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Page 11	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0580	42

11 (a)	$\frac{38}{56}$ or $\frac{19}{28}$ oe	4	[0.679 or 0.6785 to 0.6786]
			M3 for $\frac{4}{8} \times \frac{4}{7} + \frac{3}{8} \times \frac{5}{7} + \frac{1}{8} \times \frac{7}{7}$ oe
			or M2 for sum of two of the products isw $ \frac{4}{8} \times \frac{4}{7}, \frac{3}{8} \times \frac{5}{7}, \frac{1}{8} \left[\times \frac{7}{7} \right] \text{ oe} $ or $ \mathbf{M1} \text{ for } \frac{4}{8} \times \frac{4}{7} \text{ or } \frac{3}{8} \times \frac{5}{7} \text{ oe isw} $ or $ \frac{1}{8} \times \frac{7}{7} \text{ isw} $
(b)	$\frac{60}{336}$ or $\frac{5}{28}$ oe	2	After 0 scored, SC1 for answer of $\frac{38}{64}$ oe M1 for $\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}$ or $\left(\frac{4}{8} \times \frac{3}{7} \times \frac{2}{6}\right) + 3\left(\frac{4}{8} \times \frac{1}{7} \times \frac{3}{6}\right)$ oe